Aura Validation Meeting, 21 – 23 September 2005

Validation of MLS BrO

Nathaniel Livesey

Laurie Kovalenko and other MLS team members. Ross Salawitch – JPL.

[livesey@mls.jpl.nasa.gov]

22nd September 2005

Overview of the EOS MLS BrO observations.

☐ BrO is the most challenging stratospheric measurement from EOS MLS. The sets of BrO spectral lines observed by MLS have about 0.2 K signal. \Rightarrow Individual MLS radiance observations are made with 2-3 K noise. ☐ Accordingly, some form of averaging is required for useful observations. ☐ There are three approaches to this problem: I. Retrieve individual noisy BrO profiles and average appropriately \Rightarrow This is the approach taken for v1.51. 2. Compute average radiance fields and retrieve less noisy BrO profiles from these averages. ⇒ This is the approach taken for an 'interim' BrO product I'll show. 3. A new algorithm designed for such measurements, performing the averaging in an 'optimal' manner. ⇒ This approach has yet to be implemented. The large diurnal variations in BrO allow us to take ascending/descending (mostly day/night) differences to remove some biases.

The vI.51 MLS BrO product

 \square As for other products, v1.51 MLS BrO is reported as individual profiles. Pressure is the vertical coordinate with six surfaces per decade change in pressure over most of the vertical range. \Rightarrow Profiles are spaced by 1.5° great circle angle (~24.6 s). ☐ All the products are produced daily from a single run of the same algorithms. \square While products such as HCl and H₂O have very good signal to noise, BrO profiles have errors of \sim 300 pptv, compared to typical values of 10 – 15 pptv. ☐ We use very loose a priori constraints to allow the weak BrO signal to percolate through from the radiances to the level 2 product. ☐ We apply limited horizontal and vertical smoothing constraints to tune the precision vs. resolution. ☐ However, as we will see, the amount of vertical smoothing was poorly chosen for vI.51.

Internal validation for v1.51 — radiances

- ☐ Plots show one of the two MLS BrO bands.
- ☐ These are ascending/descending radiance differences in the 30−40 km tangent altitude range, averaged for the whole mission.
- ☐ Black line is average of the observations, red line is average of the v1.51 fits.
- □ Taking ascending/descending (mostly day/night) differences clarifies BrO signature.
- \Box Cyan ticks are BrO line and a nearby O_3 line.
- □ We see that we're fitting radiance observations on average to about 0.02 K.
- \Box Weaker signature 90°S 60°S expected:
 - ⇒ Generally less BrO in polar regions.
 - ⇒ Polar day/polar night suppresses ascending/descending variation.

Internal validation for v1.51 — 'sanity checks'

- ☐ Plot shows average v1.51 BrO for January 2005 over 30°N−40°N.
- Thin solid line is ascending (daytime).
- Dotted line is descending (nighttime).
- ☐ Thick line is ascending/descending difference with shading showing precision of this monthly mean.

- ☐ The observed diurnal behavior is expected, with more BrO in the day.
- ☐ The ascending/descending values seem reasonable in the upper stratosphere.
- ☐ However, in the mid- and lower stratosphere, the values seem too large.
- ☐ Even asc/des differences show unreasonable values in lower stratosphere.
- \square Overall, the data only look 'OK' over 10-2.2 hPa.
- ☐ The vertical 'oscillations' and large noise are hindering scientific study.
- □ VI.51's preference for vertical resolution over precision was probably unwise.

An interim BrO product

- ☐ To alleviate these issues, I have made an 'interim' BrO product.
- This directly retrieves daily zonal means from averaged radiance fields.
- ☐ These daily zonal means are then averaged together.
- ☐ This is shown as the red line on the new plot (still January 2005, $30^{\circ}N-40^{\circ}N$).

- ☐ We see smoother, more precise (lower vertical resolution) profiles.
 - \Rightarrow We chose \sim 6 km vertical resolution for this product.
- ☐ Improvements are seen both in the differences and the individual ascending/descending averages.
- ☐ These 'cautious' retrievals only use radiances down to 46 hPa.
- ☐ The lower limit of the vertical range of this product remains to be investigated.

Comparison to the SLIMCAT model

- □ Plot shows zonal mean ascending/descending difference for MLS interim BrO and SLIMCAT model for the whole MLS mission to date.
- ☐ The SLIMCAT model is run in 'near real time', sampled to the MLS profile locations.
- ☐ MLS shows smaller values than SLIMCAT in the peak region, but often larger values elsewhere.
- ☐ The disagreement in the lower stratosphere probably reflects a fall-off in MLS sensitivity.

Comparisons to a box model

- Plots show selected comparisons of MLS with box model output.
- \Box This is preliminary work, we need to constrain the model better to other MLS observations (to get NO_x etc., correct).

Conclusions and future work

The v1.51 product shows generally reasonable behavior. However the levels of noise make its scientific use challenging. ☐ Version 2.0 will address this problem. An interim BrO product shows more encouraging results. ☐ We plan further comparisons with models. ☐ Also some comparisons with SCIAMACHY data. ⇒ Though two different sets of this exist to date. Some comparisons with *in-situ* observations will be undertaken. ⇒ Though definitive conclusions will be hard to draw from a comparison of a single profile to a monthly zonal mean. All of these comparisons will need to involve model calculations to handle the differences in solar time.